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Abstract—Software engineering methods for analyzing and
managing variable software systems rely on accurate feature-
to-code mappings to relate high-level variability abstractions,
such as features or decisions, to locations in the code where
variability occurs. Due to the continuous and long-term evo-
lution of many systems such mappings need to be extracted
and updated automatically. However, current approaches have
limitations regarding the analysis of highly-configurable systems
that rely on different variability mechanisms. We present a novel
approach that exploits the synergies between program analysis
and diffing techniques to reveal feature-to-code mappings for
highly-configurable systems. We demonstrate the feasibility of
our approach with a set of products from a real-world product
line in the domain of industrial automation.

I. INTRODUCTION

Variability plays an essential role in most software systems
today which need to support a wide range of different customer
requirements. Research on variable software systems has pro-
gressed significantly, e.g., in the fields of software product
lines or feature-oriented software development. The existing
techniques frequently rely on feature-to-code mappings to
relate high-level variability abstractions such as features or
decisions to variation points — the locations in artifacts where
variability occurs.

However, software product lines are rarely planned and
developed from scratch. Instead they are typically the result
of maintaining and evolving code bases over many years.
This means that feature-to-code mappings either do not exist
or are frequently outdated. Researchers have thus developed
different automated approaches for recovering these mappings
and traces. For instance, Xue et al. [1] present an approach
to improve feature location in product variants by exploiting
commonalities and differences of product variants. Rubin et
al. [2] suggest heuristics for improving the accuracy of feature
location techniques by analyzing multiple product variants.

However, these approaches provide only partial answers for
the maintenance and evolution of real-world systems: (i) real-
world product lines still face clone-and-own reuse, i.e., the
products are not derived in a systematic way from the product
line but cloned and extended to provide the required functional-
ity. This means that existing feature-to-code mappings become
inaccurate making automated analyses challenging. (ii) in
variable software systems different variability mechanisms are
used in combination. For instance, systems frequently rely
on static annotation-based mechanisms such as preprocessor
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techniques as well as runtime variability approaches allowing
the adaptation of systems during operation. Variability-aware
program analysis can help to compute feature-to-code map-
pings in such contexts. However, current analysis approaches
often make assumptions about form of variability, i.e., they
often assume annotation-based PLs with preprocessors [3].
Program slicing is another way to identify feature-to-code
mappings. For instance, newer program slicing approaches
such as Hammer et al. [4] handle runtime variability by at-
taching path conditions to System Dependence Graphs (SDGs)
to improve the precision of slices. However, these approaches
do not scale to large programs as path conditions need to be
extracted for nearly every conditional statement.

We recently conducted an empirical study on the evolution
of product lines (PLs) in an industrial ecosystem confirming
challenges (i) and (ii) [5], [6]. Our goal is thus to improve
clone-and-own reuse by automatically recovering variability
traces in mixed-variability systems. Our research is based
on our earlier work: the Extraction and Composition for
Clone-and-Own (ECCO) approach [7], [8] allows recording
variability traces in clone-and-own product lines—cf. chal-
lenge (i). The Configuration-Aware Program Analysis (CAPA)
approach [9] supports mixed variability PLs via a conditional
system dependence graph with presence conditions to represent
different types of variability in a system—-cf. challenge (ii).
In this paper we report our progress in integrating these two
strands of research.

More specifically, we use CAPA to statically analyze
product variants to create conditional SDGs. ECCO then uses
a diffing algorithm to map features to the code base. The
feature traces are identified based on the differences between
the product variants. The results of this analysis can be used
to integrate different product clones into a single system
representing the variability mined in the product variants. We
demonstrate the feasibility of our approach by applying it to
a SPL in the domain of industrial automation. The results of
our preliminary evaluation show that our approach improves
the recovery of feature-to-code mapping in mixed variability,
clone-and-own product lines.

II. BACKGROUND

Variability in software can be implemented by means of
different approaches. Static variability mechanisms determine
at compile time what code to include in a program variant. An
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example are make files that only compile and link files required
for a specific variant. Another example are preprocessors
determining what lines of source code to include. Runtime
variability mechanisms allow to define the code to be executed
in a program variant during execution by adapting its features.
An example are configuration files that are processed dur-
ing program execution. Variability mechanisms are frequently
combined, e.g., when using coarse-grained static variability
mechanisms to select the modules needed for the required
features together with a runtime variability mechanism to
determine fine-grained variability of program behavior.

We integrate program analysis and diffing techniques to
improve the automated recovery of feature-to-code mappings:
we first use CAPA to analyze mixed-variability program vari-
ants with runtime variability. We then use ECCO to extract
feature-to-code traces and trace dependencies based on this
input.

A. Configuration-aware Program Analysis (CAPA)

Runtime variability is often achieved by configuration
options tested in conditional statements to enable or disable
features. This means that the source code of one product
variant may contain the implementation of all features, even
if certain features are not part of the product variant. The
CAPA approach [9] enables the identification of source code
that is relevant for a specific product variant. Specifically, the
approach analyzes the conditional statements in a program
that test configuration options read from configuration files as
initial seeds or traces for the implementation of features. CAPA
analyzes the source code of a single product variant and builds
a system dependence graph (SDG). Then, it uses architectural
knowledge to identify conditional statements representing vari-
ation points in the system. The variability mechanisms used in
the system are formulated as AST patterns to allow finding the
corresponding code locations.

For example, in Java it is very common to use class
java.util.Properties to access configuration options
stored in property files. These files represent product con-
figurations as they define values of configuration options.
The values of configuration options are typically accessed by
specific methods. For instance, if domain experts know that the
getProperty method is used for that purpose it is possible
to define an AST pattern matching such calls. Domain experts
must further define how to map such patterns to features in
an existing feature model. For instance, they may specify
a generic transformation of the configuration option’s name
to a feature name, featureName ("config_feature")
= "feature". The corresponding feature condition of the
variation point is then attached to the corresponding edges
in the SDG resulting in a conditional SDG (CSDG). Finally,
CAPA performs a reachability analysis on the CSDG using
the actual product configuration resolving the variation points
and marks unreachable nodes as inactive. This is similar to
the idea of Conditional Program Slicing, which involves the
use of symbolic execution to compute slices with respect to
specific input variable values [10].

Listing 1 shows an example using Java’s Properties
class to implement variability in the software system. The
method doSomething performs some operation and addition-
ally contains code for logging. However, the logging code
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is optional and can be activated by setting the configuration
option config_logging to enabled. Once a domain expert
specified this pattern, CAPA is able to identify active code
for the current product configuration (in the example encoded
in the properties file configuration.properties).

public class A {

private Properties prop
Properties.load("configuration.properties");

public void doSomething() {
// method implementation

if ("enabled".equals (
prop.getProperty ("config_logging"))) |
log(LogLevel.INFO, "some log message");
}
}

public void log(LogLevel 1, String msg) {
/]
}
}

Listing 1. Sample code using Java’s Properties class as variability mechanism.

B. Extraction and Composition for Clone-and-Own (ECCO)

ECCO compares different program variants to extract
feature-to-code traces, interactions between features, and de-
pendencies between traces. ECCO assumes as input a set of
n product variants about which two things are known: (i) the
source code that implements each product variant and (ii) the
set of features that each program variant provides. It is not
important how these product variants came to be. They can
be separately maintained variants created by a manual clone-
and-own approach or product variants generated using a more
structured approach like preprocessor annotated source code.

As output ECCO provides traces defining how source
code is related to features. For instance, a trace defines for
a particular part of the code which features it implements
likely, at most, or certainly not [7]. ECCO also considers
feature interactions (i.e. traces that refer to source code that
is present only when all interacting features are present), and
negative features (i.e., traces that refer to source code that is
included in case of the absence of a feature). Furthermore,
ECCO also extracts dependencies between traces. Traces (e.g.,
to a feature) can require other traces (e.g., to another feature)
to function. For example, a trace A that contains a statement
calling a method which is part of another trace B depends on
that trace B. Based on this information ECCO constructs a
simple variability model that can be used as a starting point
for manually defining a feature model.

Lastly, ECCO also comes with a composition tool that can
use the previously extracted information to compose product
variants with given sets of features they shall implement.

III. MVA APPROACH

Figure 1 depicts the high-level view of our new Mixed-
Variability Analysis (MVA) approach, which combines CAPA
and ECCO to recover feature-to-code mappings in mixed-
variability systems. In mixed-variability systems with static
and runtime variability mechanisms, the product variants may
also contain feature code not part of a product variant. Hence,
MVA first uses CAPA in a preprocessing step to remove
this dead code of the m product variants and generates n
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Fig. 1. Recovering feature-to-code mappings with mixed-variability analysis
and diffing of product variants.

annotated ASTs which are then further processed by ECCO.
First, CAPA parses the source code of every product variant
and creates ASTs. Next, CAPA computes intra-procedural
program dependence graphs (PDGs) based on intra-procedural
control and data flow information. The PDGs represent the
same information as the SDG but are limited to individual
procedures. The approach uses Harrold et al.’s algorithm [11]
computing PDGs directly based on the AST. The SDG is then
created by linking individual PDGs.

CAPA then identifies variation points by matching ded-
icated patterns in the AST and generating conditions from
these variation points. The conditions are attached to the cor-
responding edges in the SDG resulting in the conditional SDG
(CSDG), which represents the basis for identifying the code
which can be executed and code which cannot be executed in
a given product variant.

Finally, CAPA identifies unreachable nodes in the CSDG
by performing a reachability analysis for a specific product
variant. First, all nodes in CSDG are marked as inactive. The
reachability analysis algorithm starts at the root procedure
node. It traverses the CSDG by following the edges and
marks all reached nodes as active. Every time an edge with
a presence condition is visited, the edge is followed only if
the condition is satisfied regarding the values of the variables
representing the product configuration. In order to do so, the
concrete product configuration is transformed into assignments
to the variables used in the presence conditions. Therefore,
this transformation is a complementary part of the step of
extracting the presence conditions and establishes a semantic
link between a configuration and the statements in the program.

Until now, the information about dead code in a concrete
product configuration is available in the annotated CSDG.
ECCO expects as input a tree structure representing the product
variant’s source code. Therefore, the information concerning
the active and inactive CSDG nodes is transferred to the
corresponding statement nodes in the AST. Finally, CAPA
analyzes the usage dependencies of every type using the type
information of the AST. If a type is not used by an active
AST node, the type’s declaration will also be marked inactive.
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Fig. 2.
reachability analysis on the CSDGs using the corresponding product config-
urations to identify inactive code in product variants. If a CSDG node is
unreachable, the corresponding AST node is marked inactive (left side). The
traces generated by ECCO are shown on the right side.

CAPA computes CSDGs for each product variant. It performs a

ECCO then uses the annotated ASTs as input and computes
the traces and the dependencies between the traces.

Figure 2 illustrates the ASTs resulting from two different
product variants that statically have the same source code. Only
the first product variants contains the feature LOGGING which
can be enabled with a configuration. However, both product
variants statically have the same source code which would
result in the the same ASTs and would make it infeasible for
ECCO to create a useful feature-to-code mapping. CAPA thus
applies the concrete product configuration, stored in text-based
configuration files, and performs the described reachability
analysis on the CSDG. In the first product variant, all CSDG
nodes are reachable. In the second product variant, the CSDG
nodes representing the implementation of feature LOGGING
are not reachable since the presence condition logging
evaluates to false. CAPA therefore generates two different
ASTs for the two product variants and ECCO can compute
useful feature-to-code traces.

IV. PRELIMINARY EVALUATION

In this preliminary evaluation we show first indications
that the extracted traces and the dependencies among them are
correct and useful in real-world scenarios. For this purpose we
discuss first results of applying our approach to a real-world
industry case study.

A. Case Study

Our industry partner Keba AG (http://www.keba.com) is
developing and producing hardware, software, and tools for
industrial automation solutions including injection molding
machines, robotics, and heating system control. Keba develops
and maintains several heterogeneous platforms that exist in
numerous variants to meet customer requirements in different
market segments. Keba’s engineers follow a flexible devel-
opment strategy combining staged configuration [12] and ad-
hoc clone-and-own reuse [13] for creating customized system
solutions based on the KePlast platform.

We identified several variability mechanisms used within
KePlast in a former study [9]: Module linking is used during
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product customization. Different variants of a control function
are available in different modules. Engineers decide which
variant to use within a product by linking the respective
module. System variables represent optional endpoints to ma-
chine equipment used in a product configuration. Runtime
configuration parameters are available via the KePlast user
interface for fine-grained configuration before system start-up.

Feature models have been developed to describe the vari-
ability of selected subsystems. The feature model for com-
ponent Mold1l was reverse-engineered in two stages. First we
analyzed Keba’s custom-developed configuration tool, which
is used for deriving a base system solution by selecting
components and defining initial configuration settings. Our
analysis resulted in an initial feature model for the component
Mold1. Second we discussed and refined this initial feature
model with the development lead of the KePlast platform. The
feature model is shown in Figure 3.

B. Research Questions and Method

Does the extracted trace information correctly reflect
the variability in the system? To answer this question we use
ECCO’s compositor which uses the extracted trace information
to generate product variants. We use it to re-compose the same
products that were used as input (i.e., the products with the
same features) based solely on the extracted trace information.
This means that we decide about including a trace’s code based
on the features of that product variant. We then compare these
re-composed product variants to the corresponding original
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product variants generated by the KePlast product configura-
tion tool.

More specifically, we create n KePlast product variants
using the KePlast configurator and use them as input to
our approach. The size of the KePlast products range from
53,000 to 58,000 lines of code when ignoring empty lines and
comments. We then use the ECCO’s compositor to re-compose
these variants based on the extracted trace information. Finally,
we compare the re-composed variants to the corresponding
original variants generated by the KePlast configurator (after
using CAPA to remove the dead code) and determine its
correctness. Ideally they will all match their counterparts.

We measure the correctness of a composed product variant
with respect to a ground-truth product variant generated from
the KePlast configurator by means of the precision and recall
metrics computed for the source code of the product variants.
For example, a recall of 1.0 means that the composed product
contains all the source code the original counterpart contains,
and a precision of 1.0 means that the composed product
contains no source code represented as AST nodes, that is
not also contained in the original product variant.

When using n = 15 available KePlast product variants as
input to our approach and then recomposing them using the
extracted trace information, the resulting average precision is
1.0, i.e., the composed products contain no source code that is
not also contained in their respective original product variants.
The average recall is 1.0 which means that the composed prod-
ucts contain all source code of their original counterparts. This
shows that the extracted traceability information is sufficient



to at least re-compose the original product variants, which we
believe is a good indication that the extracted traces are correct.
However, in future work we also need to determine precision
and recall when composing yet unknown products variants.
Furthermore, we need to evaluate our approach with respect
to a ground truth provided by a developer.

Do the dependencies between the traces — the imple-
mentation variability — adhere to the design variability?
To answer this question we compare the extracted trace de-
pendency graph (i.e., the dependencies between the traces) to
the feature model of the KePlast system and check whether
the set of product variants described by the feature model is
a subset of the set described by the dependency graph (i.e.,
allowed by the implementation). If the feature model would
allow for the creation of product variants that are not supported
by the implementation then possible reasons can be that i) the
extracted traces and/or their dependencies are erroneous, ii) the
previously reverse-engineered feature model is erroneous, or
iii) we uncovered a flaw in the KePlast software system where
it is possible to create variants that will not work. Specifically,
we created n KePlast product variants and used them as input
to our approach. We then compared the resulting dependency
graph to the manually reverse-engineered feature model.

The extracted trace dependency graph is shown in Figure 4.
The nodes are labeled with single features and feature interac-
tions (written as 0%(feature;, ..., feature;) with i representing
the number of interacting features). Each node represents a
trace to the code of a feature or feature interaction. Negative
features (—feature) express that the features must not be present
for the traced code to be included in a product variant. The
dependency graph’s structure is very simple. There are almost
no dependencies between traces. Dependencies mostly occur
within traces or with the base, as expected. One trace (in the
top right) does not have any dependencies. This is because the
corresponding features could not be associated with any code.

When comparing this dependency graph to the feature
model shown in Figure 3 one can see high similarity. For the
most part the dependency graph matches the feature model
and the feature model violates only few dependencies in the
graph. For example closureunit depends on moldpressuresen-
sor. This would make the latter a mandatory feature which
it should not be according to the feature model. Identifying
the causes for these deviations will be part of our future
work. For instance, we want to determine whether there is
a flaw in the KePlast system, the reverse-engineered feature
model, or the extracted traces. We hope that our approach will
enable software engineers to efficiently and effectively identify
and reconcile differences between how variability is modeled
and how it is actually realized. Additionally one can see
that the feature model’s cross-tree constraint DirectClamping
= —ImpulseCounter, saying that these features exclude each
other, is also reflected in the dependency graph (see highlighted
area in Figure 4). The trace for ImpulseCounter requires code
elements from the trace containing —DirectClamping meaning
that ImpulseCounter cannot be present in a product variant if
also feature DirectClamping is present.

V. CONCLUSIONS AND FUTURE WORK

Tools for recovering feature-to-code mappings, e.g. ECCO,
in PLs have been shown to be useful, but they usually can
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handle only a single variability mechanism. Unfortunately,
highly-configurable systems often require more than one vari-
ability mechanism. In this paper, we presented a new approach
which combines the program analysis tool CAPA and the
diffing tool ECCO to address the need to be able to handle
mixed-variability systems. We also showed in our preliminary
evaluation, that the approach produces sound output.

As future work we intend to develop a common technique
for transforming between different kinds of PLs. As soon as
software systems use more than one mechanism, any use of
PL tools is difficult. This work is just a first step but already
allows to handle a wide-spread combination of variability
mechanisms, i.e., annotation-based and runtime variability
approaches. Future work will also include investigations if
converting between different mechanisms is possible without
loosing information, e.g., the reverse engineering of SPLs
by generating annotated static variability based on analyzing
different variability mechanisms.

ACKNOWLEDGMENTS

This work has been conducted in cooperation with KEBA
AG, Austria, and was supported by the Christian Doppler
Forschungsgesellschaft, Austria as well as the Austrian Science
Fund (FWF) project P25289-N15 and Lise Meitner Fellowship
M1421-N15.

REFERENCES

[1] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of

product variants,” in Proc. WCRE, 2012, pp. 145-154.

J. Rubin and M. Chechik, “Locating distinguishing features using diff
sets,” in Proc. ASE, 2012, pp. 242-245.

C. Kistner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” in Proc. OOPSLA, 2011, pp. 805-824.
C. Hammer, J. Krinke, and G. Snelting, “Information flow control for
Java based on path conditions in dependence graphs,” in Proc. IEEE
Int’l Symposium on Secure Software Engineering, 2006, pp. 87-96.

(3]

(4]

D. Lettner, F. Angerer, H. Prihofer, and P. Griinbacher, “A case study on
software ecosystem characteristics in industrial automation software,”
in Proc. Int’l Conf. on Software and Systems Process (ICSSP 2014),
Nanjing, China, 2014.

D. Lettner, F. Angerer, P. Griinbacher, and H. Prihofer, “Software
evolution in an industrial automation ecosystem: An exploratory study,”

in Proc. Int’l Euromicro Conf. on Software Engineering and Advanced
Applications (SEAA 2014), Verona, Italy, 2014.

S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in Proc. ICSME, 2014.

L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Recovering
traceability between features and code in product variants,” in SPLC,
T. Kishi, S. Jarzabek, and S. Gnesi, Eds. ACM, 2013, pp. 131-140.

F. Angerer, H. Prihofer, D. Lettner, A. Grimmer, and P. Griinbacher,
“Identifying inactive code in product lines with configuration-aware
system dependence graphs,” in Proc. SPLC 2014, Florence, Italy, 2014.
[10] G. Canfora, A. Cimitile, and A. De Lucia, “Conditioned program
slicing,” Information and Software Technology, vol. 40, no. 11-12, pp.
595-607, Dec. 1998.

M. J. Harrold, B. Malloy, and G. Rothermel, “Efficient construction of
program dependence graphs,” pp. 160-170, 1993.

[11]
[12] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration using
feature models,” in Proc. SPLC. Springer, 2004, pp. 266-283.

M. Antkiewicz, W. Ji, K. Czarnecki, T. Berger, T. Schmorleiz, R. Laem-
mel, S. Stdnciulescu, A. Wasowski, and I. Schaefer, “Flexible product
line engineering with a virtual platform,” in /CSE, 2014.



